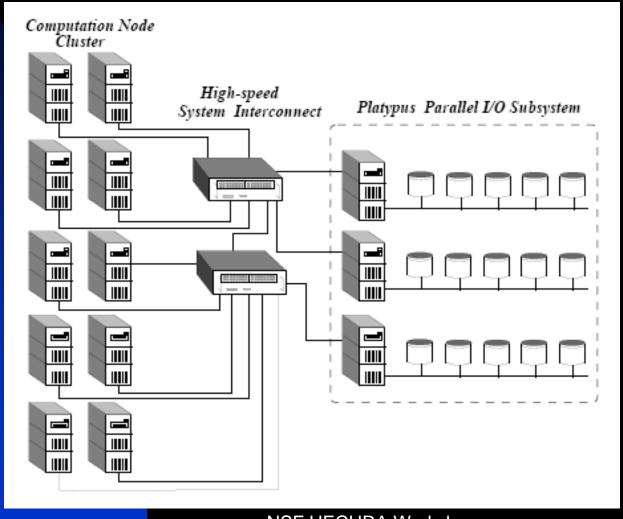
Quality of Service Guarantee for Scalable Parallel Storage Systems

Professor Tzi-cker Chiueh

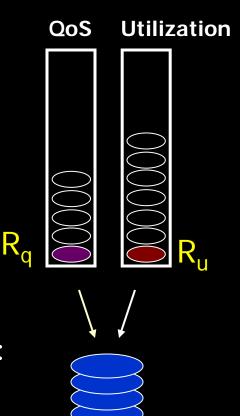

Experimental Computer Systems Laboratory
Computer Science Department
Stony Brook University

http://www.ecsl.cs.sunysb.edu/

Motivation

- PC-based compute clusters now become a norm
- Multiple parallel applications may run concurrently
- Key research question: how to provide performance isolation or guaranteed quality of service (QoS) among concurrent applications on a compute cluster's parallel storage system while maximizing its overall utilization efficiency
- Leverage multi-dimensional storage virtualization research: Stonehenge → <A, B, C, D, E>
- Project Goal: design, implement and evaluate a scalable QoS-aware parallel I/O system called Platypus

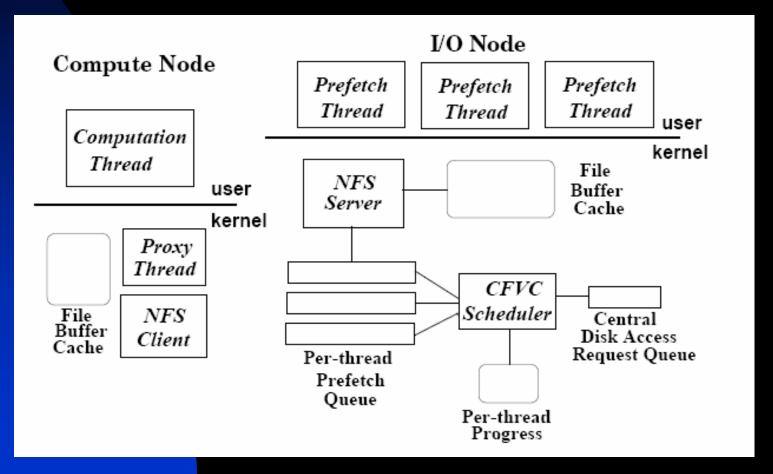
System Architecture



Disk QoS Guarantee

- Disk bandwidth requirement
 - ◆ Proportional to number of processors assigned to an application
 - Application-specified
- Proportional-share vs. priority-based
- How to account for an application's disk bandwidth consumptions across servers and disks
- Attribution of "storage virtualization" overhead
 - Overhead of switching disk head among virtual disks should be distributed according to their access locality

Disk Request Scheduling


- Long-term fairness
 - Weighted fair queuing, virtual clock, earliest deadline-first
- Disk utilization efficiency
 - ◆ SCAN → need real time
 - Shortest service time
- Dual-queue disk scheduling
- The degree of short-term unfairness of Virtual clock disk scheduling is unbounded: intelligent clock leap-forward

Decoupled File Prefetching

- Decoupled architecture
 - Separation of computation and access stream
 - Originally proposed to bridge CPU/memory performance gap
- Applied to parallel disk I/O to reduce access latency and to smooth out disk access burstiness
 - ◆ Automatic generation of an I/O thread from a parallel application, and synchronization communication between them
 - ◆ I/O threads run on Platypus nodes → Active storage
 - ◆ Minimize performance overhead due to synchronization between computation and I/O threads

Software Architecture

Evaluation Tool

- Trace-driven approach to network file server evaluation → NFS trace play-back tool (TBBT)
 - Collecting traces once
 - ◆ Replay them again and again
- Adapt it to parallel file server evaluation
 - ◆ Inference of initial file system image (how to incorporate file system aging effect)
 - Clean up traces to ensure they are well-formed
 - Scale up and down the playback of traces along both temporal and spatial dimensions
 - ◆ Ensure playback timing accuracy among correlated requests

Year 1's Goal

- Completion of a multi-node, multi-disk disk request scheduler that
 - ◆ Distributes storage virtualization tax fairly
 - ◆ Achieves the optimal balance among short-term fairness, long-term fairness and disk utilization efficiency